
ARI3210 – Speaker Classification with Deep Learning

Matthew Kenely1

1University of Malta
matthew.kenely.21@um.edu.mt

Abstract
In this project, a neural network architecture for the use training
a Speaker Identification classifier is proposed. When trained on
the ABI-1 Corpus, a deep learning classifier using the proposed
architecture achieves an F-score of 0.899
Index Terms: speech recognition, deep learning, CNN, LSTM,
speaker identification

1. Introduction
The aim of this project is to design a neural network architec-
ture using a combination of convolution and LSTM-type RNN
blocks and train a deep-learning classifier using this architec-
ture. The classifier will be used to carry out Speaker Identi-
fication (SID) (the process of identifying speakers through the
analysis of samples of their speech) on a given pool of speakers.

2. Implementation
2.1. Architecture

Shown in Table 1 is the proposed architecture:

No. Layer Type Detail

1 conv2D 3x3, 32 filters
2 batchNormalization -
3 ReLU -
4 maxPooling 2x2, stride (1,1)
5 conv2D 3x3, 64 filters
6 batchNormalization -
7 ReLU -
8 maxPooling 2x2, stride (2,2)
9 conv2D 5x5, 32 filters

10 batchNormalization -
11 ReLU -
12 dropout 10%
13 maxPooling 2x2, stride (2,2)
14 LSTM 32 units
15 batchNormalization -
16 dropout 50%
17 fullyConnected 285 neurons
18 softMax 285 outputs

Table 1: Proposed SID Architecture

Layers 1 – 7 and 16 – 17 are derived from the architectures
proposed in [1] and [2] and were used as a basis for the classi-
fier. Using solely Layers 1 – 7 combined with Layers 16 – 17

yielded good accuracy on the training set (> 0.98), but the clas-
sifier failed to generalize well, reaching a maximum accuracy of
around 0.62 on the validation set.

An LSTM layer was integrated into the architecture with
32 units and a dropout rate of 0.5 (determined through trial and
error) into the architecture (Layers 14 – 16), improving the clas-
sifier’s accuracy on the validation set by around 0.1.

To further increase the classifier’s ability to generalize on
the speaker data, an additional convolution layer (Layers 8 –
13) was introduced, followed by dropout with a rate of 0.1.

2.2. Hyperparameters

Optimizer Adam

Learning Rate Scheduled

Momentum 0.9

Loss Function Categorical cross-entropy

Metrics Accuracy

Mini-batch size 128

Gradient Clipping 0.5

Table 2: Model Compilation Configuration

Adam [3] is a popular optimization algorithm that combines
the benefits of both AdaGrad and RMSProp and is known for
its adaptive learning rate and momentum features. It has been
shown to perform well on LSTM-based models [4].

The use of a learning rate scheduler was chosen after a
rigorous experimentation process. Lower learning rates would
cause the classifier to learn excessively slowly and fall into local
minima during initial epochs, and higher learning rates would
prevent it from converging on the validation set, thus a learning
scheduler was used as follows:

Epoch Learning Rate

0 0.001

5 0.0005

10 0.0001

15 0.00005

20 0.00001

Table 3: Learning rate scheduler



Categorical cross-entropy is commonly used loss function
for multi-class classification problems and has seen use in
LSTM-based models [5]. It measures the discrepancy between
the true class distribution and the predicted class distribution.

Accuracy is a commonly used metric for classification
problems. It represents the ratio of correctly predicted instances
to the total instances, providing an overall assessment of model
performance.

An ideal mini-batch size of 128 was determined through
trial and error. A batch size of 64 resulted in excessive training
time for similar results. A batch size of 256 proved detrimen-
tal to the classifier’s ability to generalize, likely due to it being
exposed to less noise [6].

Gradient clipping was used to minimize instability in vali-
dation loss during training.

3. Evaluation
3.1. Loss curves

Figure 1: Training/validation loss/accuracy curve

The training progress of the classifier over 100 epochs is
shown in Figure 1. The classifier converged after around 20
epochs, and achieved a maximum accuracy of 0.931 on the val-
idation set.

The classifier does not display any overfitting as the number
of epochs increases, validation loss decreases consistently.

3.2. F-score

The classifier was able to achieve an average F-score of 0.977
across 5 test set splits, with a minimum of 0.974 and a maxi-
mum of 0.982 being achieved in these test sets. This low vari-
ance indicates a high degree of generalization.

The observed F-score increased throughout the project as
the ability for the classifier to generalize, i.e. performance on
the validation and test sets, increased through the steps taken in
2.1.

3.3. Confusion matrix

Figure 2: Confusion matrix across all 285 classes.

Figure 3: Confusion matrix across all 285 classes, excluding
the diagonal.

Figure 4: Top 20 speakers with the largest quantity of incorrect
predictions.



Figure 5: Accents and cumulative confusion across all speakers.

From Figure 4 it can be deduced that, given that the greatest
amount of confusion was 3 (in only one case), there is no dis-
cernible pattern which made certain speakers harder to predict
than others.

Figure 5 initially indicates a discrepancy in the predictabil-
ity of certain accents, however when accounting for the distri-
bution of accents in the dataset (as shown in Figure 6), a cor-
relation between the quantity of speakers with each accent and
the quantity of incorrect predictions is revealed, indicating that
this confusion stems linearly from a greater quantity of speakers
and not from the accents themselves.

Figure 6: Accents and cumulative confusion across all speakers,
as well as corresponding quantity of speakers in the dataset.

4. References
[1] S. Bunrit, T. Inkian, N. Kerdprasop, and K. Kerdprasop, “Text-

independent speaker identification using deep learning model of
convolution neural network,” International Journal of Machine
Learning and Computing, vol. 9, no. 2, pp. 143–148, 2019.

[2] Y. Lukic, C. Vogt, O. Dürr, and T. Stadelmann, “Speaker identifica-
tion and clustering using convolutional neural networks,” in 2016
IEEE 26th international workshop on machine learning for signal
processing (MLSP). IEEE, 2016, pp. 1–6.

[3] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[4] Z. Chang, Y. Zhang, and W. Chen, “Effective adam-optimized lstm
neural network for electricity price forecasting,” in 2018 IEEE 9th
international conference on software engineering and service sci-
ence (ICSESS). IEEE, 2018, pp. 245–248.

[5] S. Kim and M. Kang, “Financial series prediction using attention
lstm,” arXiv preprint arXiv:1902.10877, 2019.

[6] H. Yong, J. Huang, D. Meng, X. Hua, and L. Zhang, “Momentum
batch normalization for deep learning with small batch size,” in

Computer Vision–ECCV 2020: 16th European Conference, Glas-
gow, UK, August 23–28, 2020, Proceedings, Part XII 16. Springer,
2020, pp. 224–240.


